Сохранение момента импульса связано с


ГЛАВА 4. ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА

      Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки 0 данной оси. Значение момента импульса Lz не сохранение зависит от положения точки 0 на оси z.
      При вращении абсолютно твердого тела вокруг неподвижной оси каждая отдельная точка тела движется по окружности постоянного радиуса ri с некоторой скоростью vi. Скорость vi и импульс mivi перпендикулярны этому радиусу, т.е. радиус является плечом вектора mivi. Поэтому можно записать, что момент импульса отдельной точки относительно оси z равен

      Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных его точек:

      Учитывая связь между линейной и угловой скоростями (vi = ωri), получим следующее выражение для момента импульса тела относительно неподвижной оси:

                                                 (4.12)

т.е. момент импульса твердого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость.
      Продифференцировав выражение (4.12) по времени, получим:

                                                                                   (4.13)

Это еще одна сохранение момента импульса связано с форма уравнения динамики вращательного движения твердого тела относительно неподвижной оси: скорость изменения момента импульса тела относительно неподвижной оси вращения равна результирующему моменту относительно этой оси всех внешних сил, действующих на тело.
      Закон сохранения момента импульса вытекает из основного уравнения динамики вращательного движения тела, закрепленного в неподвижной точке (уравнение 4.8), и состоит в следующем:
      если результирующий момент внешних сил относительно неподвижной точки тождественно равен нулю, то момент импульса тела относительно этой точки с течением времени не изменяется.
      Действительно, если M = 0, то dL / dt = 0, откуда

                                                                                                             (4.14)

      Другими словами, момент импульса замкнутой системы с течением времени не изменяется.
      Из основного закона динамики тела, вращающегося вокруг неподвижной оси z (уравнение 4.13), следует закон сохранения момента импульса тела относительно оси:
      если момент внешних сил относительно неподвижной оси вращения тела тождественно равен нулю, то момент импульса тела относительно этой оси не изменяется в процессе движения, т.е. если Mz = 0, то dLz / dt = 0, откуда

                                                           (4.15)

      Закон сохранения момента импульса является фундаментальным законом природы. Справедливость этого закона обусловливается свойством симметрии пространства – его изотропностью, т.е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета.
      Справедливость закона сохранения момента импульса относительно неподвижной оси вращения можно продемонстрировать на опыте со скамьей Жуковского. Скамьей Жуковского называется горизонтальная площадка, свободно вращающаяся без трения вокруг неподвижной вертикальной оси ОО1. Человек, стоящий или сидящий на скамье, держит в вытянутых руках гимнастические гантели и приводится во вращение вместе со скамьей вокруг оси ОО1 с угловой скоростью ω1. Приближая гантели к себе, человек уменьшает момент инерции системы, а так как момент внешних сил равен нулю, момент импульса системы сохраняется и угловая скорость ее вращения ω2 возрастает. Тогда по закону сохранения момента импульса относительно оси ОО1 можно записать:

                                                                (4.16)

где J0 - момент инерции человека и скамьи; 2mr12 и 2mr22 - моменты инерции гантелей в первом и втором положениях; m – масса одной гантели; r1, r2 – расстояния от гантелей до оси ОО1.
      Изменение момента инерции системы связано с изменением ее кинетической энергии:


      Используя выражение для ω2, полученное из (4.16)

после преобразований получим:

      Это изменение кинетической энергии системы численно равно работе, совершенной человеком при перемещении гантелей.
      В табл. 4.2 сопоставлены основные физические величины и уравнения, определяющие вращение тела вокруг неподвижной оси и его поступательное движение.

Таблица 4.2


      Краткие выводы

  • Вращательным называется движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения.
  • Момент инерции тела относительно оси вращения – это физическая величина, равная сумме произведений масс n материальных точек тела на квадраты их расстояний до рассматриваемой оси:

  • Момент инерции тела Jz относительно любой оси вращения равен моменту его инерции Jc относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы m тела на квадрат расстояния а между осями:

  • При вращении абсолютно твердого тела вокруг неподвижной оси z его кинетическая энергия равна половине произведения момента инерции относительно оси вращения на квадрат угловой скорости:

  • Из сравнения формул следует, что момент инерции – мера инертности тела при вращательном движении.
  • Работа вращения тела идет на увеличение его кинетической энергии и определяется выражением dA = Mzdφ, где Mz – момент сил относительно оси вращения z.
  • Уравнение динамики вращательного движения твердого тела относительно неподвижной оси z (аналог второго закона Ньютона) имеет вид:

    где Lz – момент импульса твердого тела относительно оси z.
  • В замкнутой механической системе момент внешних сил относительно неподвижной оси Mz = 0 и dLz / dt = 0, откуда Lz = const – закон сохранения момента импульса. Он является следствием изотропности пространства: инвариантность физических законов относительно выбора направления осей координат системы отсчета.


      Вопросы для самоконтроля и повторения
  1. Что называется моментом инерции тела? Какова роль момента инерции во вращательном движении?
  2. Сформулируйте теорему Штейнера. От чего зависит момент инерции тела?
  3. Что называется моментом силы относительно неподвижной точки? Относительно неподвижной оси? Как определяется направление момента силы?
  4. Что такое момент импульса твердого тела? Как определяется направление момента импульса?
  5. Какова формула для кинетической энергии тела, вращающегося вокруг неподвижной оси? Как определяется работа при вращении тела?
  6. Выведите и сформулируйте уравнение динамики вращательного движения твердого тела.
  7. Сформулируйте закон сохранения момента импульса. В каких системах он выполняется?
  8. Сопоставьте основные величины и уравнения динамики поступательного и вращательного движений.

      Примеры решения задач

      Задача 1.Шар радиусом 10 см и массой 5 кг вращается вокруг оси симметрии по закону φ = A + Bt2 + Ct3, где В = 2 рад/с2, С = -0,5 рад/с3. Определить момент сил относительно оси вращения для момента времени t = 3 c.
      Дано: R = 0,1 м; m = 5 кг; φ = A + Bt2 + Ct3 рад; В = 2 рад/с2; С = -0,5 рад/с3; t = 3 c.
      Найти: Mz.

Решение


      Согласно уравнению динамики вращательного движения твердого тела относительно неподвижной оси

      Ответ: Mz = -0,1Hm.

      Задача 2. На однородный сплошной цилиндрический вал радиусом 20 см, момент инерции которого 0,15 кгм2, намотана легкая нить, к концу которой прикреплен груз массой 0,5 кг. До начала вращения барабана высота груза над полом составляла 2,3 м (рис. 4.7). Определить: а) время опускания груза до пола; б) силу натяжения нити; в) кинетическую энергию груза в момент удара о пол.
      Дано: R = 0,2 м; Jz = 0,15 кгм2; m = 0,5 кг; h = 2,3 м.
      Найти: t, T, Ek.

Решение


      По закону сохранения энергии

      

      Ответ: t = 2 с; Т = 4,31 Н; Ek = 1,32 Дж.

      Задачи для самостоятельного решения

  1. Шар и сплошной цилиндр, изготовленные из одного и того же материала, одинаковой массы катятся без скольжения с одинаковой скоростью. Определить, во сколько раз кинетическая энергия шара меньше кинетической энергии сплошного цилиндра.
  2. Полый тонкостенный цилиндр массой 0,5 кг, катящийся без скольжения, ударяется о стену и откатывается от нее. Скорость цилиндра до удара о стену 1,4 м/с, после удара 1 м/с. Определить выделившееся при ударе количество теплоты.
  3. К ободу однородного сплошного диска массой 10 кг, насаженного на ось, приложена постоянная касательная сила 30 Н. Определить кинетическую энергию через 4 с после начала действия силы.
  4. Вентилятор вращается с частотой 600 об/мин. После выключения он начал вращаться равнозамедленно и, сделав 50 оборотов, остановился. Работа сил торможения равна 31,4 Дж. Определить: а) момент сил торможения; б) момент инерции вентилятора.
  5. К ободу однородного сплошного диска радиусом 0,5 м приложена постоянная касательная сила 100 Н. При вращении диска на него действует момент сил трения 2 Нм. Определить массу диска, если известно, что его угловое ускорение постоянно и равно 16 рад/с2.
  6. С наклонной плоскости, составляющей угол 30° с горизонтом, скатывается без скольжения шарик. Пренебрегая трением, определить время движения шарика по наклонной плоскости, если известно, что его центр масс при скатывании понизился на 30 см.
  7. На однородный сплошной цилиндрический вал радиусом 50 см намотана легкая нить, к концу которой прикреплен груз массой 6,4 кг. Груз, разматывая нить, опускается с ускорением 2 м/с2. Определить: а) момент инерции вала; б) массу вала.
  8. Горизонтальная платформа массой 25 кг и радиусом 0,8 м вращается с частотой 18 об/мин. В центре стоит человек и держит в расставленных руках гири. Считая платформу диском, определить частоту вращения платформы, если человек, опустив руки, уменьшит свой момент инерции от 3,5 кгм2 до 1 кгм2.
  9. Человек массой 60 кг, стоящий на краю горизонтальной платформы массой 120 кг, вращающейся по инерции вокруг неподвижной вертикальной оси с частотой 10 об/мин, переходит к ее центру. Считая платформу круглым однородным диском, а человека – точечной массой, определить, с какой частотой будет тогда вращаться платформа.
  10. Платформа, имеющая форму сплошного однородного диска, может вращаться по инерции вокруг неподвижной вертикальной оси. На краю платформы стоит человек, масса которого в 3 раза меньше массы платформы. Определить, как и во сколько раз изменится угловая скорость вращения платформы, если человек перейдет ближе к центру на расстояние, равное половине радиуса платформы.


Закрыть ... [X]

Физика. Механика 4.8. Закон сохранения момента импульса Твердение гипсовых вяжущих веществ


Сохранение момента импульса связано с И.С. Нургалиев 4.4. Закон сохранения момента импульса
Сохранение момента импульса связано с Момент импульса закон его сохранения
Сохранение момента импульса связано с Закон сохранения момента импульса
Сохранение момента импульса связано с Момент импульса Википедия
Сохранение момента импульса связано с Более 25 лучших идей на тему «Детский кардиган» на Pinterest
Сохранение момента импульса связано с Видео - Ремонт квартиры своими
Сохранение момента импульса связано с Виды разных игрушек из бисера со схемами плетения
Сохранение момента импульса связано с Выкройка чердачной игрушки. Чердачные игрушки своими руками